486 research outputs found

    New Technologies for Sustainable Urban Transport in Europe

    Get PDF
    In the past few years, the European Commission has financed several projects to examine how new technologies could improve the sustainability of European cities. These technologies concern new public transportation modes such as guided buses to form high capacity networks similar to light rail but at a lower cost and better flexibility, PRT (Personal Rapid Transit) and cybercars (small urban vehicles with fully automatic driving capabilities to be used in carsharing mode, mostly as a complement to mass transport). They also concern private vehicles with technologies which could improve the efficiency of the vehicles as well as their safety (Intelligent Speed Adaptation, Adaptive Cruise >.Control, Stop&Go, Lane Keeping,...) and how these new vehicles can complement mass transport in the form of car-sharing services

    Risk Assessment Algorithms Based On Recursive Neural Networks

    Get PDF
    The assessment of highly-risky situations at road intersections have been recently revealed as an important research topic within the context of the automotive industry. In this paper we shall introduce a novel approach to compute risk functions by using a combination of a highly non-linear processing model in conjunction with a powerful information encoding procedure. Specifically, the elements of information either static or dynamic that appear in a road intersection scene are encoded by using directed positional acyclic labeled graphs. The risk assessment problem is then reformulated in terms of an inductive learning task carried out by a recursive neural network. Recursive neural networks are connectionist models capable of solving supervised and non-supervised learning problems represented by directed ordered acyclic graphs. The potential of this novel approach is demonstrated through well predefined scenarios. The major difference of our approach compared to others is expressed by the fact of learning the structure of the risk. Furthermore, the combination of a rich information encoding procedure with a generalized model of dynamical recurrent networks permit us, as we shall demonstrate, a sophisticated processing of information that we believe as being a first step for building future advanced intersection safety system

    Late Pleistocene Stratigraphy And Events In The Asbestos-valcourt Region, Southeastern Quebec

    Get PDF
    The stratigraphic record of the Asbestos-Valcourt region indicates that glacial sediment deposite during at least two regional glacial advances underlie Late Wisconsinan ice-contact and glaciolacustrine sediments. Glaciolacustrine sediments (unit B), which underlie surface till (drift unit C), were deposited during a rather short-lived interstade, prior to the Late Wisconsinan glacial maximum; unit B is a probable correlative of the Gayhurst Formation (Middle Wisconsinan).;Till deposited in the Appalachian Uplands during the earlier glacial advance (drift unit A) contains only rare Shield-type erratics and has a distinctive Appalachian provenance. Till geochemistry as well as till clast lithology and fabrics indicate that drift unit A was deposited by a glacier that was advancing westward from Appalachian outflow centers. However, the presence of some northwest-derived clasts in till of drift unit A provides evidence for an earlier phase of southeastward ice-flow. Ice-flow sequences recorded in drift unit A suggest that a shift of outflow centers with an Appalachian-based glacier took place toward the close of glacial phase A; it is during this part of glacial phase A that a northward ice-flow episode occurred in uplands of the Asbestos region. This glacial unit is believed to be a correlative of Chaudiere Till (Early to Middle Wisconsinan).;Till deposited during the last regional ice advance (drift unit C) commonly contains Precambrian erratics as well as abundant northwest derived local debris. Glacial dispersal trains, subtill glacitectonic deformations and till clast fabrics consistently indicate that drift unit C and its equivalent, Lennoxville Till, were deposited by ice that advanced southeastward from a Laurentide outflow center and that this ice-flow pattern was maintained until final ice-retreat.;During northward ice-retreat that followed glacial phase C, a series of recessional end-moraines (Cherry River/East-Angus, Mont Ham and Ulverton-Tingwick Moraines, in order of decreasing age) were deposited and Glacial Lakes Memphremagog and Vermont were impounded south of the ice front. Subsequent glacial retreat along the edge of the Appalachian uplands together with deglaciation of the Quebec City narrows allowed marine waters to invade the isostatically depressed Central St. Lawrence Lowland, thus forming the Champlain Sea about 12 ka

    Late Wisconsinan Deglaciation and Champlain Sea Invasion in the St. Lawrence Valley, Québec

    Get PDF
    Champlain Sea history is directly linked to Late Wisconsinan deglacial episodes. Champlain Sea Phase I (Charlesbourg Phase) began in the Québec area at about 12.4 ka. It represented a western extension of the Goldthwait Sea between remnant Appalachian ice masses and the Laurentide Ice Sheet. Further south, at about the same time, in the Appalachian uplands and piedmont, high-level glacial lakes were impounded by the ice-front during glacial retreat toward NNW: lakes Vermont, Memphrémagog and Mégantic. Lowlands of the Upper St. Lawrence and Lake Champlain valleys were progressively deglaciated and inundated by Lake Iroquois and Lake Vermont. At about 12.1 ka, these two lakes coalesced and formed a single water-body, here referred to as Lake Candona. After the Ulverton-Tingwick Moraine was constructed, this lake extended northeastward onto the Appalachian piedmont where varved sediments containing Candona subtriangulata underlie marine clays. Current data and interpretations bring into question the former concept of the Highland Front Moraine System. The invasion of the main basin, or Champlain Sea Phase II, began around 12 ka. Replacement of Lake Candona by the sea resulted in a fall of about 60 m in water levels. Champlain Sea Phase III began at the end of the Saint-Narcisse episode, at about 10.8 ka. At this time marine waters were able to enter valleys of the Laurentian Highlands where brackish or fresh paramarine basins developed.L'histoire de la Mer de Champlain est directement liée à la déglaciation du Wisconsinien supérieur. La phase I de la Mer de Champlain (Phase de Charlesbourg) débute dans la région de Québec vers 12,4 ka. Elle représente le prolongement de la Mer de Goldthwait entre l'Inlandsis laurentidien et les glaces résiduelles appalachiennes. Plus au sud et approximativement en même temps, le retrait glaciaire vers le NNW sur les plateaux et le piémont appalachiens est marqué par des moraines et les lacs proglaciaires Vermont, Memphrémagog et Mégantic; les terres basses du haut Saint-Laurent et du lac Champlain étaient progressivement déglacées et inondées par les lacs Iroquois et Vermont. Vers 12,1 ka, ces deux lacs forment par coalescence Ie Lac Candona. Après l'épisode de la Moraine d'Ulverton-Tingwick, ce lac inondait le piémont appalachien vers le NE, où des varves à Candona subtriangulata reposent sous les argiles marines. Ces données remettent en question le concept de Highland Front Moraine System. L'invasion du bassin principal (Phase II de la Mer de Champlain) débute vers 12 ka. Le remplacement du Lac Candona par la mer provoque une chute d'environ 60 m du niveau du plan d'eau. La Phase III de la Mer de Champlain commence à la fin de l'épisode de Saint-Narcisse, vers 10,8 ka; les eaux marines pénètrent dans les vallées des Laurentides et sont coalescentes à des bassins paramarins saumâtres ou non salés.Die Geschichte des Meeres von Champlain ist direkt mit Enteisungs-Episoden im spàten Wisconsin verknùpft. Die Phase I des Champlains-Meeres (Charlesbourg Phase) began im Gebiet von Québec um etwa 12.4 ka. Sie stellt eine westliche Ausdehnung des Goldwaith-Meeres dar, zwischen restlichen Eismassen der Appalachen und der laurentidischen Eisdecke. Wàhrend des glazialen Rùckzugs nach NNW wurden weiter sûdlich etwa zur selben Zeit im Hochland und am Fuss der Appalachen glaziale Seen mit hohem Wasserspiegel durch die Eisfront geformt: der Vermont-, Memphrémagog-, und der Mégantic-See. Das Tiefland und die oberen Sankt-Lorenz- und Champlainsee-Tàler wurden allmâhlich enteist und durch den Iroquois-See und den Vermont-See ùberschwemmt. Um etwa 12.1 ka vereinigten sich dièse beiden Seen und bildeten einen einzigen See, der hier Candona-See genannt wird. Nachdem die Ulverton-Tingwick-Moràne geformt war, dehnte sich dieser See nach Nordosten aus bis zum Fuss der Appalachen, wo sich Warwen-Sedimente, die Candona subtriangulata enthalten, unter marinem Ton befinden. Dièse Daten und Interpretationen stellen das frùhere Konzept des Highland-Front-Morâne-Systems in Frage. Der Einbruch des Hauptbeckens oder die Phase II des Meeres von Champlain begann etwa um 12 ka. AIs der Candona-See durch das Meer ersetzt wurde, senkte sich das Wasserniveau um etwa 60 m. Die Phase III des Champlain-Meeres begann am Ende der Episode von Saint-Narcisse, um etwa 10.8 ka. Zu diesem Zeitpunkt konnten marine Wasser in die Tâler des laurentidischen Hochlands eindringen, wo sich mit Salzwasser gemischte oder frische paramarine Becken bildeten

    A Software Framework for Vehicle-Infrastructure Cooperative Applications

    Get PDF
    A growing category of vehicle-infrastructure cooperative (VIC) applications requires telematics software components distributed between an infrastructure-based management center and a number of vehicles. This article presents an approach based on a software framework, focusing on a Telematic Management System (TMS), a component suite aimed to run inside an infrastructure-based operations center, in some cases interacting with legacy systems like Advanced Traffic Management Systems or Vehicle Relationship Management. The TMS framework provides support for modular, flexible, prototyping and implementation of VIC applications. This work has received the support of the European Commission in the context of the projects REACT and CyberCars

    Cybercars : Past, Present and Future of the Technology

    Get PDF
    Automobile has become the dominant transport mode in the world in the last century. In order to meet a continuously growing demand for transport, one solution is to change the control approach for vehicle to full driving automation, which removes the driver from the control loop to improve efficiency and reduce accidents. Recent work shows that there are several realistic paths towards this deployment : driving assistance on passenger cars, automated commercial vehicles on dedicated infrastructures, and new forms of urban transport (car-sharing and cybercars). Cybercars have already been put into operation in Europe, and it seems that this approach could lead the way towards full automation on most urban, and later interurban infrastructures. The European project CyberCars has brought many improvements in the technology needed to operate cybercars over the last three years. A new, larger European project is now being prepared to carry this work further in order to meet more ambitious objectives in terms of safety and efficiency. This paper will present past and present technologies and will focus on the future developments

    Vers des véhicules en pilotage automatique ? entretien avec Michel Parent, propos recueillis par Dominique Chouchan

    Get PDF
    National audienceDans le triple objectif de réduire le nombre d'accidents de la route, d'améliorer le trafic et de diminuer la consommation de carburant, l'automobile de demain pourrait être dotée d'une panoplie d'instruments permettant d'échanger des informations avec la signalisation routière ou les autres véhicules

    Sites et monuments : de la déconcentration à la décentralisation

    Get PDF
    corecore